New movement on the Alzheimer front…
There is some traction on Alzheimer front… promising?
A study, published by Massachusetts Institute of Technology scientists in the online edition of Nature, reports the successful restoration of memory in mice by administering medicine that mimics the memory-boosting effects of enriched environmental conditions. This class of drugs, the researchers say, could lead to new treatment options for Alzheimer’s disease.
Li-Huei Tsai, a professor of neuroscience in M.I.T.’s department of Brain and Cognitive Sciences and the study’s senior author, notes that for decades neuroscientists have known that living conditions with lots of novel stimuli improve rodent memory. Using a flexible mouse model, her team set out to determine whether anything could be done to restore memory "after a significant number of neurons are lost in the brain."
Tsai’s group manipulated the gene for the protein p25, which has been implicated in several neurodegenerative diseases, so that it could be easily switched on and off. When the protein was on, the mice typically accrued nerve and brain damage and eventually forgot information they had recently learned. Tsai says the mouse model allowed researchers to differentiate between learning impairment and long-term memory loss.
"In most [Alzheimer’s] studies, people just look at learning impairment," she says. "In our models, we can really control the timing in which neurodegeneration will happen" to observe loss of memory as well as learning ability.
To establish whether environmental changes could improve learning ability the team put mice with significant neuronal damage in one of two types of cages. One was a standard, single mouse cage with bedding, food and water, and the other was a much larger design in which several mice were grouped together. The latter group were provided with a set of props changed daily, such as running wheels, tunnels and umbrella-shaped toys of different colors. Sure enough, mice that lived in stimulating environments performed better on learning tasks involving associations and spatial reasoning.
The researchers then trained mice to do several activities and respond to stimuli, such as a shock when they were in certain cages. A mouse repeatedly put in a shock box would typically freeze as soon as it was placed inside—a signal that it was afraid and, therefore, remembered being zapped in this particular cage.
Powered by Qumana